Differential Contribution of Tryptophans to the Folding and Stability of the Attachment Invasion Locus Transmembrane β-Barrel from Yersinia pestis

نویسندگان

  • Ankit Gupta
  • Punit Zadafiya
  • Radhakrishnan Mahalakshmi
چکیده

Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of human VDAC-2 scaffold dynamics by interfacial tryptophans is position specific

Membrane proteins employ specific distribution patterns of amino acids in their tertiary structure for adaptation to their unique bilayer environment. The solvent-bilayer interface, in particular, displays the characteristic 'aromatic belt' that defines the transmembrane region of the protein, and satisfies the amphipathic interfacial environment. Tryptophan-the key residue of this aromatic bel...

متن کامل

Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein

The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro Here, we experimentally measured the thermodynamic c...

متن کامل

Yersinia infection tools—characterization of structure and function of adhesins

Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals-Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of pro...

متن کامل

Predicting College Students’ Mental Health Based on Religious Faith Mediated by Happiness, Ambivalent Attachment Style and Locus of Control

Objective: The present study was designed to examine the college student's mental health predication model based on religious faith mediated by happiness, ambivalent attachment style and ‎locus of control. Methods: The method of study was correlational.  The statistical population included all college students of the Shiraz University in the academic year of 2013-2014.  The sample included 240...

متن کامل

Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR

Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014